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In an incompressible perfectly conducting fluid the Navier—Stokes equations
become
ov ,
—a—t'—l—v.Vv =—VP—vAv+jx H,
where j=curl H, divH=0, dive =0, and dH/dt = curl (v x H). The last equa-
tion follows from the Maxwell equation dH/dt = —curl £ and the assumption of
perfect conduction — that the electric field in the frame of the fluid vanishes, £ =
E+vx H = 0. In geometric terms, it says that the system evolves so that the time
derivative of H is equal to minus its spatial Lie derivative:

dH
Vi L, H.

Thus H is equivariant with respect to the evolution (or ‘frozen in the fluid’) as long
as the evolution follows these equations. Since the first equation tends to dissipate
magnetic energy E = [ || H||* the question naturally rises whether the topology of H
determines lower bounds on £. We treat this question in the general context of a
divergence-free vector field H on a closed Riemannian 3-manifold M. We obtain a
result bounding & from below but make no assertion on the existence of extremals.

Arnol’d (1986) has defined a quadratic form for any ‘null-homologous’ H,t

I(H) = f {eurl™ H, H),
M

which is invariant under the group SDiff of volume-preserving diffeomorphisms. It
follows that when {(H) #+ 0, K is bounded below on the SDiff orbit of H. Arnol’d’s
invariant is a generalization of the homological linking number of two closed curves
applied to the trajectories of H. This has led Moffatt (1985) to conjecture that other
‘higher-order’ linking (not detectable homologically) also leads to positive lower
bounds on E.

It is the purpose of this note to show that any non-trivial linking between circular
packets of H-integral curves implies a lower bound to E. An asymptotic version of
this result — one not relying on closed orbits — would be most welcome and in keeping
with the philosophy of Arnol’d’s paper. To complete the context, Zel’dovich (see
Arnol’d 1986, p. 331) has shown that if H is taken to be the killing field on §*
generated by infinitesimal rotation about a one-dimensional axis (the circular orbits
do not link!) then H may be deformed (by elements of SDiff S%) to make the

T ‘Null homologous’ means the flux of H across any closed surface vanishes; this guarantees the
existence of curl™* H.
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associated energy arbitrarily small, E < e. Possibly, configurations with no positive
lower bound on energy are quite rare and amenable to classification.
By a ‘link’ is meant a smooth imbedding of n circles into a 3-manifold

St>M? n>1.

C=

L:
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The link is trivial if it bounds n smoothly and disjointly imbedded disks, L,
L
st — M3
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Otherwise thelink is essential. We say a divergence-free vector field H on Mis ‘modelled

on L’ if there is a smooth imbedding of U?_; D?* x S on to a tubular neighbourhood

n

of I, © M which carries the foliation by circles pt x 8* of {J D? X 8! on to the integral
i=1

curves of H near the link L.

THEOREM. If H is a divergence-free field on a closed 3-manifold M which is modelled
on an essential link (or knot) 1. then there is a positive lower bound to the energy
E(f, H) over the orbit, fe SDiff, of volume preserving diffeomorphisms of M.

Note: Given any L <M one may construct an H modelled on L. If T is a
closed tubular neighbourhood of a link LeM, it follows from Moser’s (1965) result
on the existence of volume-preserving diffeomorphisms (between diffeomorphic
manifolds of equal volume) that T has a volume-preserving parameterization
p:UL, (DE x8SY)—~T. Let J be the vector field ¢,0/08 where ¢,: D, >R* U 0
is a radial bump function on the disk which tapers smoothly to zero at radius 7
and 0/0# is the unit tangent vector field to the second factor. The field H may be
defined as p,J on T and zero on M\T.

Proof. We will prove the stronger result that the t-norm E,(f, H) = [y || f« H|| has
a positive lower bound.

Suppose E, 0. That is 3 f;€ SDiff such that [, || f; Hlld vol >0. Let T < M be the
invariant tubular neighbourhood of L. Let ¢: X =U#,(D*xS'),>T be a (not
necessarily volume preserving) diffeomorphism which carries circles pt x 8! to orbits
of H. By compactness, 3¢ > 0 such that

°
1.96
at all points ¢ = ¢g(zx) of T. Thus

J,

1
~IH] <

! < ¢|H| and %dvol ¢y € g Vd vol (z) < cd vol ()

i(fioqu%] d vol(z)~0.
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Think of X as Y xS* where Y = UZ  D? with the natural measure. By Fubini’s
theorem: [y length f;0q(y x 8') = [, length ¥ - 0. So for any € > 0, 3; such that for
i > j length v} < e for ye ¥~ = ¥ where ¥~ has measure (1—¢).

Consider any component, £, of L. For ¢ large this component will be represented
by many short (length < €) integral curves; let y% be one of them and let , be a base
point on vi. If € is sufficiently small, the geodesic ball of radius 4¢ about ,, B, ,,
cannot possibly contain all the short circles parallel to any component of L since
these fill a volume bounded below independently of i(¢) whereas vol (B, ,,)—0. (We
may assume that 4¢ is less than the injective radius of M so that B has the topology
of a ball.) Thus the link f,L is represented (for ¢ sufficiently large) by » loops the last
n—1 of which lie outside a 3¢-ball containing the first (since they are short and not
contained in the 4¢-ball). By the same argument we may exclude a small (arbitrarily
small if ¢ is chosen sufficiently large) set of representing curves to obtain the
additional condition that yi, ..., ¥ lies outside the 3¢ ball about a base point on ¥%.
Proceeding in this way we find representative ¥i, ..., % each contained in a 3¢ ball
disjoint from the others. Hence f;I. for sufficiently large ¢, and therefore L, is
completely split — there is a disjoint collection of smooth balls, the f;-preimages of the
balls of radius € about base points on ¥%, ..., 7%, each of which contains exactly one
component and meets no others.

The condition ‘completely split’ does not in itself imply L is trivial since it may
contain knotted components. Observe however if H is modelled on L it is modelled
also on some link 2L of 2n components obtained from L by splitting each component
into two (possibly twisted) parallel copies. (Simply define D’ U D” < D? to be any
two disjointly imbedded subdisks of the unit disk and restrict g to U, (D" U D") x
S') to obtain a modelling on 2L.) Our assumption that E,—0 implies that 2L is
completely split. The following straightforward argument in 3-manifold topology
shows that this implies L itself is trivial.

If a parallel y” to a knot v lies in a ball disjoint from y then a radial homotopy in
that ball together with a thin cylinder joining y to y” yields a ‘Dehn disk’ 4 — one
whose singularities do not intersect its boundary. A fundamental theorem of 3-
manifold topology, Dehn’s Lemma [P] says that 4 can be replaced by an imbedded
disk 4" with 04" = 04 = y and 4’ contained in an arbitrarily small neighbourhood of
A4 — showing that the original knot bounds an imbedded disk and thus is trivial.
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