A note on topology and magnetic energy in incompressible perfectly conducting fluids

By MICHAEL H. FREEDMAN

Department of Mathematics, University of California, San Diego, CA 92093, USA

(Received 4 November 1987 and in revised form 9 February 1988)

In an incompressible perfectly conducting fluid the Navier-Stokes equations become

$$\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v} = -\boldsymbol{\nabla} \mathbf{P} - \boldsymbol{\nu} \Delta \boldsymbol{v} + \boldsymbol{j} \times \boldsymbol{H},$$

where $j = \operatorname{curl} H$, div H = 0, div v = 0, and $dH/dt = \operatorname{curl} (v \times H)$. The last equation follows from the Maxwell equation $dH/dt = -\operatorname{curl} E$ and the assumption of perfect conduction – that the electric field in the frame of the fluid vanishes, $E' = E + v \times H = 0$. In geometric terms, it says that the system evolves so that the time derivative of H is equal to minus its spatial Lie derivative:

$$\frac{\mathrm{d}\boldsymbol{H}}{\mathrm{d}t} = -L_{\mathrm{v}}\boldsymbol{H}.$$

Thus H is equivariant with respect to the evolution (or 'frozen in the fluid') as long as the evolution follows these equations. Since the first equation tends to dissipate magnetic energy $E = \int ||H||^2$ the question naturally rises whether the topology of Hdetermines lower bounds on E. We treat this question in the general context of a divergence-free vector field H on a closed Riemannian 3-manifold M. We obtain a result bounding E from below but make no assertion on the existence of extremals.

Arnol'd (1986) has defined a quadratic form for any 'null-homologous' H,\dagger

$$\mathbf{I}(\boldsymbol{H}) = \int_{\mathbf{M}} \langle \operatorname{curl}^{-1} \boldsymbol{H}, \boldsymbol{H} \rangle,$$

which is invariant under the group SDiff of volume-preserving diffeomorphisms. It follows that when $I(H) \neq 0$, E is bounded below on the SDiff orbit of H. Arnol'd's invariant is a generalization of the homological linking number of two closed curves applied to the trajectories of H. This has led Moffatt (1985) to conjecture that other 'higher-order' linking (not detectable homologically) also leads to positive lower bounds on E.

It is the purpose of this note to show that any non-trivial linking between circular packets of H-integral curves implies a lower bound to E. An asymptotic version of this result – one not relying on closed orbits – would be most welcome and in keeping with the philosophy of Arnol'd's paper. To complete the context, Zel'dovich (see Arnol'd 1986, p. 331) has shown that if H is taken to be the killing field on S³ generated by infinitesimal rotation about a one-dimensional axis (the circular orbits do not link!) then H may be deformed (by elements of SDiff S³) to make the

 \dagger 'Null homologous' means the flux of H across any closed surface vanishes; this guarantees the existence of curl⁻¹ H.

associated energy arbitrarily small, $E < \epsilon$. Possibly, configurations with no positive lower bound on energy are quite rare and amenable to classification.

By a 'link' is meant a smooth imbedding of n circles into a 3-manifold

$$\mathbf{L} \colon \bigcup_{i=1}^{n} \mathbf{S}^{1} \to \mathbf{M}^{3}, \ n \ge 1.$$

The link is trivial if it bounds n smoothly and disjointly imbedded disks, L,

Otherwise the link is essential. We say a divergence-free vector field H on M is 'modelled on L' if there is a smooth imbedding of $\bigcup_{i=1}^{n} D^2 \times S^1$ on to a tubular neighbourhood of $L \subset M$ which carries the foliation by circles $pt \times S^1$ of $\bigcup_{i=1}^{n} D^2 \times S^1$ on to the integral curves of H near the link L.

THEOREM. If H is a divergence-free field on a closed 3-manifold M which is modelled on an essential link (or knot) L then there is a positive lower bound to the energy $E(f_*H)$ over the orbit, $f \in SDiff$, of volume preserving diffeomorphisms of M.

Note: Given any $L \subset M$ one may construct an H modelled on L. If T is a closed tubular neighbourhood of a link $L \in M$, it follows from Moser's (1965) result on the existence of volume-preserving diffeomorphisms (between diffeomorphic manifolds of equal volume) that T has a volume-preserving parameterization $p: \bigcup_{i=1}^{n} (D_{r_i}^2 \times S^1) \to T$. Let J be the vector field $\phi_i \partial/\partial \theta$ where $\phi_i: D_{r_i} \to R^+ \cup 0$ is a radial bump function on the disk which tapers smoothly to zero at radius r_i and $\partial/\partial \theta$ is the unit tangent vector field to the second factor. The field H may be defined as p_*J on T and zero on $M \setminus T$.

Proof. We will prove the stronger result that the 1-norm $E_1(f_*H) = \int_M ||f_*H||$ has a positive lower bound.

Suppose $E_1 \to 0$. That is $\exists f_i \in S$ Diff such that $\int_M ||f_i, H|| d \text{ vol } \to 0$. Let $T \subset M$ be the invariant tubular neighbourhood of L. Let $q: X = \bigcup_{i=1}^n (D^2 \times S^1)_i \to T$ be a (not necessarily volume preserving) diffeomorphism which carries circles $\text{pt} \times S^1$ to orbits of H. By compactness, $\exists c > 0$ such that

$$\frac{1}{c} \|\boldsymbol{H}\| \leq \left\| \boldsymbol{q}_{\star} \frac{\partial}{\partial \boldsymbol{\theta}} \right\| \leq c \|\boldsymbol{H}\| \quad \text{and} \quad \frac{1}{c} \operatorname{d} \operatorname{vol}(t) \leq q^{-1^{\star}} \operatorname{d} \operatorname{vol}(x) \leq c \operatorname{d} \operatorname{vol}(t)$$

at all points t = q(x) of T. Thus

$$\int_{\mathcal{X}} \left\| (f_i \circ q)_* \frac{\partial}{\partial \theta} \right\| \mathrm{d} \operatorname{vol}(x) \to 0.$$

550

Think of X as $Y \times S^1$ where $Y = \bigcup_{i=1}^n D_i^2$ with the natural measure. By Fubini's theorem: $\int_Y \text{length } f_i \circ q(y \times S^1) = \int_Y \text{length } \gamma_y^i \to 0$. So for any $\epsilon > 0$, \exists_j such that for i > j length $\gamma_y^i < \epsilon$ for $y \in Y^- \subset Y$ where Y^- has measure $(1 - \epsilon)$.

Consider any component, ℓ_1 , of L. For *i* large this component will be represented by many short (length $< \epsilon$) integral curves; let γ_i^i be one of them and let \star be a base point on γ_1^i . If ϵ is sufficiently small, the geodesic ball of radius 4ϵ about *, $B_{*,4\epsilon}$, cannot possibly contain all the short circles parallel to any component of L since these fill a volume bounded below independently of $i(\epsilon)$ whereas vol $(B_{*,4\epsilon}) \rightarrow 0$. (We may assume that 4ϵ is less than the injective radius of M so that B has the topology of a ball.) Thus the link $f_i L$ is represented (for i sufficiently large) by n loops the last n-1 of which lie outside a 3ϵ -ball containing the first (since they are short and not contained in the 4c-ball). By the same argument we may exclude a small (arbitrarily small if i is chosen sufficiently large) set of representing curves to obtain the additional condition that $\gamma_3^i, \ldots, \gamma_n^i$ lies outside the 3ϵ ball about a base point on γ_2^i . Proceeding in this way we find representative $\gamma_1^i, \ldots, \gamma_n^i$ each contained in a 3ϵ ball disjoint from the others. Hence $f_i L$ for sufficiently large *i*, and therefore L, is completely split – there is a disjoint collection of smooth balls, the f_i -preimages of the balls of radius ϵ about base points on $\gamma_1^i, \ldots, \gamma_n^i$, each of which contains exactly one component and meets no others.

The condition 'completely split' does not in itself imply L is trivial since it may contain knotted components. Observe however if H is modelled on L it is modelled also on some link 2L of 2n components obtained from L by splitting each component into two (possibly twisted) parallel copies. (Simply define $D' \cup D'' \subset D^2$ to be any two disjointly imbedded subdisks of the unit disk and restrict q to $\bigcup_{i=1}^{n} (D' \cup D'') \times$ S¹) to obtain a modelling on 2L.) Our assumption that $E_1 \to 0$ implies that 2L is completely split. The following straightforward argument in 3-manifold topology shows that this implies L itself is trivial.

If a parallel γ' to a knot γ lies in a ball disjoint from γ then a radial homotopy in that ball together with a thin cylinder joining γ to γ' yields a 'Dehn disk' Δ - one whose singularities do not intersect its boundary. A fundamental theorem of 3manifold topology, Dehn's Lemma [P] says that Δ can be replaced by an imbedded disk Δ' with $\partial \Delta' = \partial \Delta = \gamma$ and Δ' contained in an arbitrarily small neighbourhood of Δ - showing that the original knot bounds an imbedded disk and thus is trivial.

I would like to thank Keith Moffatt and Ted Frankel for introducing me to the physics and geometry of this problem. This work was supported in part by NSF/DMS 86-1037 and the McArthur Foundation.

REFERENCES

- ARNOL'D, V. I. 1986 The asymptotic Hopf invariant and its applications. Sel. Math. Sov. 5, 327-345 (an English translation).
- MOFFATT, H. K. 1985 Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals. J. Fluid Mech. 159, 359-378.
- MOSER, J. 1965 Volume elements on a manifold. Trans. Am. Math. Soc. 120, 286-293.
- PAPAKYRIAKOPOULOS, C. D. 1957 On Dehn's lemma and the asphericity of knots. Proc. Natn. Acad. Sci. USA 43, 169-172; Ann. Math. 66, 1-26.