A note on topology and magnetic energy in incompressible perfectly conducting fluids

By MICHAEL H. FREEDMAN
Department of Mathematics, University of California, San Diego, CA 92093, USA

(Received 4 November 1987 and in revised form 9 February 1988)
In an incompressible perfectly conducting fluid the Navier-Stokes equations become

$$
\frac{\partial v}{\partial t}+v . \nabla v=-\nabla \mathrm{P}-v \Delta v+j \times H,
$$

where $\boldsymbol{j}=\operatorname{curl} \boldsymbol{H}, \operatorname{div} \boldsymbol{H}=0, \operatorname{div} \boldsymbol{v}=0$, and $\mathrm{d} \boldsymbol{H} / \mathrm{d} \boldsymbol{t}=\operatorname{curl}(\boldsymbol{v} \times \boldsymbol{H})$. The last equation follows from the Maxwell equation $\mathrm{d} \boldsymbol{H} / \mathrm{d} t=-\operatorname{curl} E$ and the assumption of perfect conduction - that the electric field in the frame of the fluid vanishes, $\boldsymbol{E}^{\prime}=$ $\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{H}=\mathbf{0}$. In geometric terms, it says that the system evolves so that the time derivative of \boldsymbol{H} is equal to minus its spatial Lie derivative:

$$
\frac{\mathrm{d} \boldsymbol{H}}{\mathrm{~d} t}=-L_{\mathrm{v}} \boldsymbol{H} .
$$

Thus \boldsymbol{H} is equivariant with respect to the evolution (or 'frozen in the fluid') as long as the evolution follows these equations. Since the first equation tends to dissipate magnetic energy $E=\int\|\boldsymbol{H}\|^{2}$ the question naturally rises whether the topology of \boldsymbol{H} determines lower bounds on E. We treat this question in the general context of a divergence-free vector field \boldsymbol{H} on a closed Riemannian 3-manifold M. We obtain a result bounding E from below but make no assertion on the existence of extremals.

Arnol'd (1986) has defined a quadratic form for any 'null-homologous' \boldsymbol{H}, \dagger

$$
\mathrm{I}(H)=\int_{\mathrm{M}}\left\langle\operatorname{curl}^{-1} H, H\right\rangle
$$

which is invariant under the group SDiff of volume-preserving diffeomorphisms. It follows that when $I(\boldsymbol{H}) \neq 0, \boldsymbol{E}$ is bounded below on the SDiff orbit of \boldsymbol{H}. Arnol'd's invariant is a generalization of the homological linking number of two closed curves applied to the trajectories of \boldsymbol{H}. This has led Moffatt (1985) to conjecture that other 'higher-order' linking (not detectable homologically) also leads to positive lower bounds on E.

It is the purpose of this note to show that any non-trivial linking between circular packets of \boldsymbol{H}-integral curves implies a lower bound to E. An asymptotic version of this result - one not relying on closed orbits - would be most welcome and in keeping with the philosophy of Arnol'd's paper. To complete the context, Zel'dovich (see Arnol'd 1986, p. 331) has shown that if \boldsymbol{H} is taken to be the killing field on \mathbb{S}^{3} generated by infinitesimal rotation about a one-dimensional axis (the circular orbits do not link!) then H may be deformed (by elements of S Diff S^{3}) to make the

[^0]associated energy arbitrarily small, $E<\epsilon$. Possibly, configurations with no positive lower bound on energy are quite rare and amenable to classification.

By a 'link' is meant a smooth imbedding of n circles into a 3-manifold

$$
\mathrm{L}: \bigcup_{i=1}^{n} \mathrm{~S}^{1} \rightarrow \mathrm{M}^{3}, n \geqslant 1
$$

The link is trivial if it bounds n smoothly and disjointly imbedded disks, \bar{L},

Otherwise the link is essential. We say a divergence-free vector field \boldsymbol{H} on \mathbf{M} is ' modelled on L^{\prime} if there is a smooth imbedding of $\bigcup_{i-1}^{n} D^{2} \times S^{1}$ on to a tubular neighbourhood of $\mathrm{L} \subset \mathrm{M}$ which carries the foliation by circles $\mathrm{pt} \times \mathrm{S}^{1}$ of $\bigcup_{i=1}^{n} \mathrm{D}^{2} \times \mathrm{S}^{1}$ on to the integral curves of H near the link L.

Theorem. If \boldsymbol{H} is a divergence-free field on a closed 3-manifold \mathbf{M} which is modelled on an essential link (or knot) L then there is a positive lower bound to the energy $E\left(f_{*} H\right)$ over the orbit, $f \in S$ Diff, of volume preserving diffeomorphisms of M .

Note: Given any $\mathrm{L} \subset \mathrm{M}$ one may construct an \boldsymbol{H} modelled on L . If T is a closed tubular neighbourhood of a link $L \in M$, it follows from Moser's (1965) result on the existence of volume-preserving diffeomorphisms (between diffeomorphic manifolds of equal volume) that T has a volume-preserving parameterization $\mathrm{p}: \bigcup_{i=1}^{n}\left(\mathrm{D}_{\mathrm{r}_{i}}^{2} \times \mathrm{S}^{1}\right) \rightarrow \mathrm{T}$. Let J be the vector field $\phi_{i} \partial / \partial \theta$ where $\phi_{i}: \mathrm{D}_{\mathrm{r}_{i}} \rightarrow \mathrm{R}^{+} \cup 0$ is a radial bump function on the disk which tapers smoothly to zero at radius r_{i} and $\partial / \partial \boldsymbol{\theta}$ is the unit tangent vector field to the second factor. The field \boldsymbol{H} may be defined as $p_{*} J$ on T and zero on $M \backslash T$.

Proof. We will prove the stronger result that the 1 -norm $E_{1}\left(f_{*} \boldsymbol{H}\right)=\int_{\mathrm{M}}\left\|f_{*} \boldsymbol{H}\right\|$ has a positive lower bound.
Suppose $E_{1} \rightarrow 0$. That is $\exists f_{i} \in S$ Diff such that $\int_{M}\left\|f_{i_{*}} \boldsymbol{H}\right\| \mathrm{d}$ vol $\rightarrow 0$. Let $\mathrm{T} \subset \mathrm{M}$ be the invariant tubular neighbourhood of L . Let $q: \mathrm{X}=\bigcup_{i=1}^{n}\left(\mathrm{D}^{2} \times \mathrm{S}^{1}\right)_{i} \rightarrow \mathrm{~T}$ be a (not necessarily volume preserving) diffeomorphism which carries circles $\mathrm{pt} \times \mathrm{S}^{1}$ to orbits of \boldsymbol{H}. By compactness, $\exists c>0$ such that

$$
\frac{1}{c}\|\boldsymbol{H}\| \leqslant\left\|q \cdot \frac{\partial}{\partial \boldsymbol{\theta}}\right\| \leqslant c\|\boldsymbol{H}\| \quad \text { and } \quad \frac{1}{c} \mathrm{~d} \operatorname{vol}(t) \leqslant q^{-1^{\star}} \mathrm{d} \operatorname{vol}(x) \leqslant c \mathrm{~d} \operatorname{vol}(t)
$$

at all points $t=q(x)$ of T. Thus

$$
\int_{X}\left\|\left(f_{i} \circ q\right) * \frac{\partial}{\partial \boldsymbol{\theta}}\right\| \mathrm{d} \operatorname{vol}(x) \rightarrow 0
$$

Think of X as $Y \times S^{1}$ where $Y=\bigcup_{i=1}^{n} D_{i}^{2}$ with the natural measure. By Fubini's theorem: \int_{Y} length $f_{i} \circ q\left(y \times \mathbf{S}^{\mathbf{1}}\right)=\int_{Y}$ length $\gamma_{y}^{i} \rightarrow 0$. So for any $\epsilon>0, \exists_{j}$ such that for $i>j$ length $\gamma_{y}^{i}<\epsilon$ for $y \in Y^{-} \subset Y$ where Y^{-}has measure ($1-\epsilon$).

Consider any component, ℓ_{1}, of L. For i large this component will be represented by many short (length $<\epsilon$) integral curves; let γ_{1}^{i} be one of them and let ${ }_{*}$ be a base point on γ_{1}^{i}. If ϵ is sufficiently small, the geodesic ball of radius 4ϵ about ${ }_{*}, \mathrm{~B}_{*, 4 \epsilon}$, cannot possibly contain all the short circles parallel to any component of L since these fill a volume bounded below independently of $i(\epsilon)$ whereas vol $\left(\mathrm{B}_{*, 4 \epsilon}\right) \rightarrow 0$. (We may assume that 4ϵ is less than the injective radius of M so that B has the topology of a ball.) Thus the link $f_{i} \mathrm{~L}$ is represented (for i sufficiently large) by n loops the last $n-1$ of which lie outside a 3ϵ-ball containing the first (since they are short and not contained in the 4ε-ball). By the same argument we may exclude a small (arbitrarily small if i is chosen sufficiently large) set of representing curves to obtain the additional condition that $\gamma_{3}^{i}, \ldots, \gamma_{n}^{i}$ lies outside the 3ϵ ball about a base point on γ_{2}^{i}. Proceeding in this way we find representative $\gamma_{1}^{i}, \ldots, \gamma_{n}^{i}$ each contained in a 3ε ball disjoint from the others. Hence $f_{i} \mathrm{~L}$ for sufficiently large i, and therefore L , is completely split - there is a disjoint collection of smooth balls, the f_{i}-preimages of the balls of radius ϵ about base points on $\gamma_{1}^{i}, \ldots, \gamma_{n}^{i}$, each of which contains exactly one component and meets no others.

The condition 'completely split' does not in itself imply L is trivial since it may contain knotted components. Observe however if \boldsymbol{H} is modelled on L it is modelled also on some link $2 L$ of $2 n$ components obtained from L by splitting each component into two (possibly twisted) parallel copies. (Simply define $\mathrm{D}^{\prime} \cup \mathrm{D}^{\prime \prime} \subset \mathrm{D}^{2}$ to be any two disjointly imbedded subdisks of the unit disk and restrict q to $\cup_{i=1}^{n}\left(\mathrm{D}^{\prime} \cup \mathrm{D}^{\prime \prime}\right) \times$ S^{1}) to obtain a modelling on $2 L$.) Our assumption that $E_{1} \rightarrow 0$ implies that 2 L is completely split. The following straightforward argument in 3 -manifold topology shows that this implies L itself is trivial.

If a parallel γ^{\prime} to a knot γ lies in a ball disjoint from γ then a radial homotopy in that ball together with a thin cylinder joining γ to γ ' yields a 'Dehn disk' Δ-one whose singularities do not intersect its boundary. A fundamental theorem of 3 manifold topology, Dehn's Lemma [P] says that Δ can be replaced by an imbedded disk Δ^{\prime} with $\partial \Delta^{\prime}=\partial \Delta=\gamma$ and Δ^{\prime} contained in an arbitrarily small neighbourhood of Δ-showing that the original knot bounds an imbedded disk and thus is trivial.

I would like to thank Keith Moffatt and Ted Frankel for introducing me to the physics and geometry of this problem. This work was supported in part by NSF/ DMS 86-1037 and the McArthur Foundation.

REFERENCES

Arnol'd, V. I. 1986 The asymptotic Hopf invariant and its applications. Sel. Math. Sov. 5, 327-345 (an English translation).
Moffatt, H. K. 1985 Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals. J. Fluid Mech. 159, 359-378.
Moser, J. 1965 Volume elements on a manifold. Trans. Am. Math. Soc. 120, 286-293.
Papakyriakopoulos, C. D. 1957 On Dehn's lemma and the asphericity of knots. Proc. Natn. Acad. Sci. USA 43, 169-172; Ann. Math. 66, 1-26.

[^0]: \dagger 'Null homologous' means the flux of \boldsymbol{H} across any closed surface vanishes; this guarantees the existence of $\mathrm{curl}^{-1} \boldsymbol{H}$.

