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In  an incompressible perfectly conducting fluid the Navier-Stokes equations 
become 

av 
at 
-+v .Vv  = - V P - v A u + j x H ,  

where j = curl H ,  div H = 0, div u = 0, and dHjdt  = curl ( u  x H). The last equa- 
tion follows from the Maxwell equation dN/dt = -curl E and the assumption of 
perfect conduction - that the electric field in the frame of the fluid vanishes, E = 
E+ v x H = 0. I n  geometric terms, it says that the system evolves so that the time 
derivative of H is equal to minus its spatial Lie derivative : 

-- - -L,H.  d H  
dt 

Thus H i s  equivariant with respect to  the evolution (or ‘frozen in the fluid ’) as long 
as the evolution follows these equations. Since the first equation tends to dissipate 
magnetic energy E = J I(H[(2 the question naturally rises whether the topology of H 
determines lower bounds on E .  We treat this question in the general context of a 
divergence-free vector field H on a closed Riemannian 3-manifold M .  We obtain a 
result bounding E from below but make no assertion on the existence of extremals. 

Arnol’d (1986) has defined a quadratic form for any ‘null-homologous ’ H , t  

I(H) = (curI-lH, H), 

which is invariant under the group SDiff of volume-preserving diffeomorphisms. It 
follows that when I ( H )  -+ 0, E is bounded below on the XDiff orbit of H .  Arnol’d’s 
invariant is a generalization of the homological linking number of two closed curves 
applied to  the trajectories of H .  This has led Moffatt (1985) to  conjecture that other 
‘ higher-order ’ linking (not detectable homologically) also leads to  positive lower 
bounds on E .  

It is the purpose of this note to show that any non-trivial linking between circular 
packets of H-integral curves implies a lower bound to E .  An asymptotic version of 
this result - one not relying on closed orbits - would be most welcome and in keeping 
with the philosophy of Arnol’d’s paper. To complete the context, Zel’dovich (see 
Arnol’d 1986, p. 331) has shown that if H is taken to  be the killing field on S3 
generated by infinitesimal rotation about a one-dimensional axis (the circular orbits 
do not link!) then H may be deformed (by elements of SDiff S3) to make the 

s, 

t ‘Null homologous ’ means the flux of H across any closed surface vanishes; this guarantees the 
existence of curl-’ H.  
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associated energy arbitrarily small, E < IZ. Possibly, configurations with no positive 
lower bound on energy are quite rare and amenable to classification. 

By a 'link' is meant a smooth imbedding of n circles into a 3-manifold 

n 
L: U S1+M3, n 3 1. 

i-1 

The link is trivial if it bounds n smoothly and disjointly imbedded disks, L, 

n L 
u S' + M3 

i-1 

Otherwise the link is essential. We say a divergence-free vector field Won M is ' modelled 
on L '  if there is a smooth imbedding of u2=l D2 x S' on to a tubular neighbourhood 

of L c M which carries the foliation by circles pt x S1 of U D2 x S' on to the integral 

curves of H near the link L. 

n 

t-1 

THEOREM. If H i s  a divergence-free field o n  a closed 3-manifold M which i s  modelled 
o n  an essential l ink (or knot) L then there i s  a positive lower bound to the energy 
E(  f* H) over the orbit, f ESDiff, of volume preserving diffeomorphisms of M. 

Note: Given any L c M one may construct an H modelled on L. If T is a 
closed tubular neighbourhood of a link LEM, it follows from Moser's (1965) result 
on the existence of volume-preserving diffeomorphisms (between diffeomorphic 
manifolds of equal volume) that T has a volume-preserving parameterization 
p:  Upsl (D,"* x S')+T. Let J be the vector field # i a / a B  where $i: D,(-tR+ u 0 
is a radial bump function on the disk which tapers smoothly to zero a t  radius ri 
and d / a B  is the unit tangent vector field to  the second factor. The field H may be 
defined as p,J on T and zero on M\T. 

Proof. We will prove the stronger result that  the l-norm El(  f* If) = Jw \ I f*  HI( has 
a positive lower bound. 

Suppose El +- 0. That is 3 fi E XDiff such that J M  11 f i ,  HIId vol + 0. Let T c M be the 
invariant tubular neighbourhood of L. Let q :  X = U:=' (D2 x S1)i -f T be a (not 
necessarily volume preserving) diffeomorphism which carries circles pt x S1 to orbits 
of H. By compactness, 3 c  > 0 such that 

1 
- (IWI( d q,- < c((Hl1 and -dvol(t) d q-'*dvol(x) d cdvol(t) 
C i i 4 C 

a t  all points t = q ( x )  of T. Thus 
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Think of X as Y XA’P where Y = u?=, I): with the natural measure. By Fubini’s 
theorem : ly length fi o q ( y  x S’) = ly length y i  --f 0. So for any E > 0, 3, such that for 
i >j length y; < E for Y E  Y-  c Y where Y -  has measure (1 - E ) .  

Consider any component, el, of L. For i large this component will be represented 
by many short (length < E )  integral curves; let yi  be one of them and let * be a base 
point on y4. If E is sufficiently small, the geodesic ball of radius 4e about *, B*,4e, 
cannot possibly contain all the short circles parallel to any component of L since 
these fill a volume bounded below independently of i ( c )  whereas vol (B*,4e)+0. (We 
may assume that 4~ is less than the injective radius of M so that B has the topology 
of a ball.) Thus the linkf,L is represented (for i sufficiently large) by n loops the last 
n- 1 of which lie outside a 3s-ball containing the first (since they are short and not 
contained in the 4e-ball). By the same argument we may exclude a small (arbitrarily 
small if i is chosen sufficiently large) set of representing curves to obtain the 
additional condition that y i ,  . . . , yk lies outside the 3e ball about a base point on yi .  
Proceeding in this way we find representative y; ,  ..., y: each contained in a 3e ball 
disjoint from the others. Hence f t L  for sufficiently large i ,  and therefore L, is 
completely split - there is a disjoint collection of smooth balls, thef,-preimages of the 
balls of radius E about base points on y:, ..., y:, each of which contains exactly one 
component and meets no others. 

The condition ‘completely split’ does not in itself imply L is trivial since i t  may 
contain knotted components. Observe however if H is modelled on L i t  is modelled 
also on some link 2L of 2n components obtained from L by splitting each component 
into two (possibly twisted) parallel copies. (Simply define D’ U D” c D2 to be any 
two disjointly imbedded subdisks of the unit disk and restrict q to U (D’ U D”) x 
S1) to obtain a modelling on 2L.)  Our assumption that El+O implies that 2L is 
completely split. The following straightforward argument in 3-manifold topology 
shows that this implies L itself is trivial. 

If a parallel y’ to a knot y lies in a ball disjoint from y then a radial homotopy in 
that ball together with a thin cylinder joining y to y‘ yields a ‘Dehn disk’ A - one 
whose singularities do not intersect its boundary. A fundamental theorem of 3- 
manifold topology, Dehn’s Lemma [Y] says that A can be replaced by an imbedded 
disk A’ with ad’ = ad = y and A’ contained in an arbitrarily small neighbourhood of 
A - showing that the original knot bounds an imbedded disk and thus is trivial. 
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